

AFRL-OSR-VA-TR-2013-0172

Out-Learning Attackers: A Game Theoretic Approach to Cyber
Defense

John Musacchio
Regents of University of California

April 2013
Final Report

DISTRIBUTION A: Approved for public release.

AIR FORCE RESEARCH LABORATORY
AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)

ARLINGTON, VIRGINIA 22203
AIR FORCE MATERIEL COMMAND

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

28-02-2013 Final Performance Report Feb. 1, 2009 - Nov. 30, 2012

Out-Learning Attackers: A Game Theoretic Approach to Cyber Defense

FA9550-09-1-0049

Musacchio, John
Frazier, Greg
Kreidl, Pat

Regents of University of California, Santa Cruz
1156 High Street
Santa Cruz, CA 95064

Air Force Office of Scientific Research
875 N. Randolph St. Room 3112
Arlington, VA 22203
Herklotz, Robert

AFOSR

 AFRL-OSR-VA-TR-2013-0172

Distribution A: Approved for public release

In this project we have constructed a Markov Decision Process (MDP) model to demonstrate the value of not always expelling attackers found in a defender’s
information system. We have developed models to extract qualitative insights into the interaction of a defender trying to classify an attacker and an attacker
trying to evade classification. In particular, we have developed a model in which the attacker chooses an attack rate and the defender chooses a detection
threshold to apply after a fixed set of observations. In the model we show that often pure strategy equilibria do not exist. In a related model we allow the
defender to dynamically adjust the observation window as he collects data, as in the well known sequential probability ratio test. We show numerically that
equilibria appear to exist in the model. In a related model, we restructure the attacker’s strategy to be a distribution across the number of hits to try in N steps (a
mixed strategy). We show that the equilibrium can be computed efficiently, and we use that fact to extract qualitative insights. One insight is that the defender
also ends up using a randomized detection threshold in Nash equilibrium, since with any fixed threshold the attacker will often just attack at a level just below
the threshold. This finding suggests that defenders, and hence designers of security software, should consider using randomized detection and classification
thresholds. Finally, our methodology allows us to efficiently analyze a broad class of games that are like zero-games except that one player has an extra
additive term in their payoff function that only depends on their action. This finding makes a broader class of game models applicable to security settings
analyzable.

computer security, game theory, classification

N/A

 U U U

SAR 14
Musacchio, John

+1 510-501-2817

Out-learning Attackers: A Game Theoretic Approach to Cyber Defense
AFOSR Information Operations and Security Program

Final Report
Project Period: 2/1/09 - 11/30/12

John Musacchio, UC Santa Cruz; Greg Frazier and Pat Kreidl BAE Systems

1 Introduction

This project was based on the premise that making systems difficult to infiltrate, detecting and infiltrations
as soon as possible, and expelling attackers when detected may not be enough, and in some cases may
actually be detrimental. A fundamental problem with this approach is that it encourages attackers to try
again, and in subsequent attempts, they are likely to have learned more about the defender’s system’s
defenses than the defender has learned about the attacker. Consequently, each attack is more likely to
achieve the attacker’s objectives. From this perspective, a cyber defense strategy should not only keep
attackers out, but should also enable a defender to learn about an attacker’s methods and intentions faster
than the attacker can learn about the defender.

Our work during the beginning of the project focused on assessing the potential cost of always expelling
attackers versus following an optimized policy that considered the value of keeping attackers in the system
to learn about their motives. This work is described in Section 2 of the report. At this stage, the work
presumed that the defender could learn about the attacker by observing it in the system, but did not
study in detail how that learning would occur. Later, in the project the work focused on this learning
– particularly the problem of classifying attackers in situations in which the attacker is adjusting their
strategy to make classification more difficult. This part of the investigation is described in Section 3.

2 Expelling Attackers

During the course of an attack, the defender may choose either to expel the attacker once he detects his
presence, or to keep his in the system in order to observe and learn about the attacker. If the defender
could “out-learn” the attacker, i.e. learn about the attacker faster than he learns about the defender,
with the help of that intelligence the defender may be able to totally thwart the attacker’s infiltration and
ensure the security of the system against this attacker in the long run.

2.1 Model

We use a simple discrete-time MDP to model the system. Our model proceeds in discrete time slots
indexed by k. At any time k, the state of the system is described by four state variables. The state
variable ck ∈ {C,NC} describes whether the attacker is “Connected” to the secured information system
or “Not Connected”. Similarly, dk ∈ {D,ND} indicates whether the defender has either “Detected” or
“Not Detected” the attacker’s connection. The other two variables, xk, yk ∈ [0, 1], is used to represent the
knowledge that the attacker and defender have at time k, respectively.

The system evolves according to the rules described below, and the connection and detection aspects is
illustrated in Figure 1.

• Each period that the attacker is disconnected from the defender’s system, he may (re-)connect with
probability pconnect = ε.

• Each period that the attacker is connected but not yet detected, the defender may detect the existence
of attacker with probability pdetect = δ. This probability reflects the capability of the Intrusion

1

Figure 1: The dynamics of the connection and detection processes.

Detection System (IDS) deployed by the defender.

• After connection (in state (C, ·)), the attacker could achieve his objective with probability psuccess(k) =
γxk(1 − yk) where γ ∈ (0, 1] is a scalar. Note that psuccess increases as the attacker’s knowledge xk
grows, and decreases as the defender’s knowledge yk grows. We refer to this formulation as the single
goal formulation. In an alternative formulation, we consider the case where the attacker may have
multiple goals during the course of an attack and each goal will yield 1 unit of reward to the attacker,
the quantity γxk(1− yk) is then the expected reward for the attacker in each period; and we call it
multiple goals formulation.

• During periods that the attacker is connected (in state (C, ·)), he could gather information about the
defender’s system. The defender may also learn about the attacker during periods that the defender
knows the presence (in state (C,D)) of the attacker. To make the model tractable, we use two simple
types of learning curves to model the knowledge increase – geometric and linear learning curves. For
the geometric case, xk, yk evolves according to the following recursive expressions during an learning
period:

xk = xk−1 + α(1− xk−1),
yk = yk−1 + β(1− yk−1),

where α, β ∈ (0, 1) are the corresponding learning parameters represents the speed of learning of the
attacker and defender, respectively. We also consider the linear case which facilitates the analysis of
the corresponding MDP problem as to make the state space finite:

xk =

{
xk−1 + α if 0 ≤ k ≤ b1/αc
1 otherwise

,

yk =

{
yk−1 + β if 0 ≤ k ≤ b1/βc
1 otherwise

,

where α, β ∈ (0, 1) are the slopes of the corresponding learning curves.

• Every period that the attacker is connected and detected, the defender has a control decision to expel
the attacker or not. Expelling the attacker will drive the system to state (NC,ND); otherwise, the
system stays at (C,D) for one period. This is the only state where the defender has the opportunity
to apply control, and the attacker has no control choice in this model.

2

Figure 2: The performance of Always-Expel policy.

2.2 Analysis

We study this model by formulating it as a Markov Decision Process (MDP). The details are given in
[1]. One observation that is used in the analysis is that when the defender knowledge yk reaches 1, the
evolution of the model effectively ends since the attacker cannot gain anything more from the system.
Thus the model with the linear learning curves should stop evolving after a finite time. This allows us to
model it as a Stochastic Shortest Path (SSP) problem [2]. Another observation is that if an attacker has
a probability of not returning after an expulsion. it can be modeled as a discounted MDP since future
costs are discounted by the chance that the attacker will have given up by that future time. Conversely, a
persistent attacker is modeled with an undercounted MDP. For the persistent attacker, we can use these
observations to show some monotonicity properties of the defender’s value function which in turn lead to
this result

Prop. 1 For the undiscounted MDP (persistent attacker) with linear learning curves, the Never-Expel
policy is optimal and dominates any other policy.

Some further technical arguments extend the above proposition to the other, geometric learning curve as
well. We also consider the following embellishment to the original model.

• Boosting Factor Upon Expulsion: A simple embellishment of the original model is to introduce a
knowledge boosting factor, f . When the defender chooses to expel the attacker, the attacker’s
knowledge grows according to xk = xk−1 + fα(1− xk−1) (geometric case) or xk = xk−1 + fα (linear
case) where f > 1 and k is the time index. This expression reflects the possibility that the attacker
may learn faster in an expulsion period than in a period he stays connected without expulsion.
This reflects the effect that the attacker may learn something about the reason of his failure (being
detected) so that he can improve tactics next time. This embellishment shall not affect the results
derived in this section because it only makes expulsion less attractive.

2.3 Simulation Results

Without formulating the model into an MDP, one can simulate the evolution of the attack-defense process
under different defender policies. To begin with, it is interesting to compare two extreme policies Always-
Expel and Never-Expel. In Figure 2, 3 the result of a typical sample path is displayed for the geometric
case. The performance measure is defined as the cumulative probability of attacker success (the single goal
formulation), and the parameter choice is α = .02, β = .05, γ = .01, ε = .05, δ = .05. Besides, we assume at
the initial state (k = 0) both attacker and defender’s have zero knowledge and the attacker is not connected
(state (NC,ND)), and simulate the system from time k = 0 to 1000. The left plot of Figure 2 shows that
the attacker’s knowledge grows faster than that of the defender under the Always-Expel policy, and the

3

Figure 3: The performance of Never-Expel policy.

middle plot indicates that the cumulative probability of attacker success exceeds 90%. Similar plots are
provided in Figure 3 for the Never-Expel policy. By comparing the left plots of Figure 2 and 3, one could
see that the defender’s knowledge grows faster in the latter and the defender successfully out-learn the
attacker. Consequently, the cumulative probability of attacker success is under 12%, an order of magnitude
of improvement from the rather naive Always-Expel policy. The right plots in both figures demonstrate the
evolution of the per-period probability of attacker success. One could observe the rapid defender learning
under the Never-Expel policy results in the drastic drop of the per-period attacker success probability
which further explains the advantage of the out-learning strategy.

2.3.1 Structure of the Optimal Policy

By way of policy iteration, it is easy to compute the optimal stationary policy consisting of decisions only
depends on states. Figure 4 illustrates the optimal policy of the discounted MDP under the parameter
choice: ρ = .89, α = .09, β = .13, γ = .05, ε = .05, δ = .05. The optimal policy is displayed in a control-
matrix form where each entry corresponds to the optimal decision of the defender in state (x, y,3). By

Figure 4: The optimal policy in control-matrix form.

experiments with various parameter settings, we observe that the optimal policy of the discounted MDP
always possesses a lower-triangular, threshold-like structure. Roughly, with a fixed amount of knowledge
the defender shall switch from Not-Expel to Expel as the attacker knowledge grows. Note this is similar
to the idea of a threshold policy where the optimal control switch from one to another as the state exceeds
some threshold point. This is quite intuitive in that for fixed defender knowledge, the more the attacker
knows about the defender’s system, the more immediate damage he may impose. Consequently, it might be
more preferable to expel the attacker and avoid relatively significant immediate costs for a while; moreover,

4

since there is some positive probability that the attacker may give up in each period, postponing the attack
by expulsion is more advantageous than the out-learning strategy. On the other hand, as the defender
knowledge grows larger there are less Expel entries in the optimal control-matrix. Again, this could be
understood from the fact that the immediate cost is decreasing w.r.t the defender knowledge.

2.4 Conclusion

We have considered the defender’s policy optimization problem with presence of the learning effect in a
security context. By formulating the problem into a Markov decision process, we are able to analyze the
characteristics of the optimal policy. If the attacker’s is persistent, the optimal strategy of the defender is
to keep the attacker in the system in order to out-learn him and eventually thwart the attacks, which is
quite different from the conventional idea of expelling the attacker whenever detecting his presence. For
the case where the attacker may give up, it can be formulated into a discounted MDP, and we observe that
the optimal policy in this case has certain structure by numerical experiments.

Our model, although quite stylized, is able to capture the interesting effects when one considers the learning
effect in a cyber-defense scenario. It demonstrates the potential benefit of gathering intelligence from the
attacker during the course of a defense. This idea yields a new perspective in studying the network security
problems.

3 Classification

Our work on classification can be divided into two categories. Our work earlier in the project looked at a
model in which the attacker chooses a single number, the rate at which to attack. This work is described
in Section 3.1. The second category of work, done later in the project, supposed the attacker could pick a
distribution across “attack strengths” (mixed strategy). This work is described in Section 3.2.

3.1 Attacker Chooses Real Number Valued “Attack Strength”

This section summarizes work published in [3] The model is illustrated in Figure 5. A network defender
faces an attacker that can either be a spy or spammer with probabilities p and 1 − p respectively. The
defender has two servers that can be attacked, a File Server (FS) and a Mail Server (MS). We suppose
that spammers attack the MS most often because they want to send spam and to get the addresses of
potential victims. However, a spammer occasionally hits the FS as he explores the defender’s information
system looking for other potential targets. We suppose time is discrete, and in each period k, a spammer
hits the FS with probability θ0 <

1
2 and otherwise he hits the MS. The attacks are restricted to be i.i.d.

Bernoulli from period to period. Moreover, we suppose the defender can observe the sequence of attacks
zk ∈ {MS,FS}. Spammers are supposed to be non-strategic, so θ0 is taken to be a fixed parameter in the
model.

A spy has to choose the frequency with which to hit the FS, which is what he prefers to attack as that is
where the information he wants is stored. However, he also can choose to hit the MS during some time
periods to make it more difficult for the defender to distinguish him from a spammer. We suppose that
the spy’s strategy is to pick a single probability θ1 of hitting the FS in any period. Once the spy picks θ1,
his attacks on the FS are restricted to be Bernoulli. If he picks θ1 too high, then it will be easy for the
defender to distinguish him from a spammer; if he picks θ1 too low, then he reduces the frequency with
which he gets to attack the desired target.

The defender has to decide in each period whether to classify the attacker as a spy or a spammer, or to
do nothing and keep observing. When a spammer is attacking, the defender pays a penalty c0 each time
he hits the MS and pays a penalty F for mis-classifying a spammer as a spy. When a spy is attacking,

5

Figure 5: An illustration of the classification game.

the defender pays a penalty c1 for each hit on the FS, which appears as a payoff −c1 to the spy. If the
defender correctly classifies a spy, the game ends and the spy pays a penalty L. However, if the defender
mis-classifies a spy as a spammer, we suppose that the spy can then continue to attack with impunity
and thus earns a reward equal to the discounted net present value of an endless stream of FS attacks that
happen with probability θ1 in each period. This mis-classification reward to the spy, like the the spy’s
rewards for all preceding FS attacks, appears as a penalty to the defender.

In this work we consider two versions of this game. In the first version (Section 3.1.1), we suppose that the
defender’s strategy is to commit to a fixed number of observation periods N . Simultaneously, spies pick
θ1. At the end of N periods, the defender makes the classification decision that minimizes his expected
cost given the observations. We call this the fixed N game. We find that this game has no pure Nash
equilibrium by experiments covering the whole parameter space.

In the second version (Section 3.1.2), the defender does not commit to an observation period but instead can
decide to keep taking observations, depending on what has been observed so far. We call this the dynamic
N game. The defender’s best response to a given θ1 is similar to the well known Sequential Probability
Ratio Test (SPRT) [4]. In a SPRT (with Binomial data and two hypothesis), one keeps track of the Log
Likelihood Ratio (LLR), which evolves like a one-dimensional random walk as observations come, and
makes a classification when the LLR crosses either an upper or lower threshold. For a given θ1, the best
response of the defender is to use an SPRT-like test with particular thresholds (that can be numerically
computed) and a hypothesis for θ1 that matches the value the spy is actually using. If we fix a defender
strategy (SPRT thresholds and hypothesis θ̂1) it might be that the spy’s best response is to play with a
θ1 that does not match what the defender is expecting. A Nash equilibrium of the game would be a point
where attacker θ1 and the defender’s hypothesis θ̂1 match. We find that the dynamic N game can exhibit
such a Nash equilibrium by experiments leveraging available computational tools for Partially-Observable
Markov Decision Processes (POMDPs) [5] and other finite-state Markov reward processes [2].

3.1.1 Fixed N game

In the Fixed N game, the defender employs a fixed-sample-size, uniformly most powerful (UMP) test [6].
We start by considering a simple-vs-simple test H0 : θ = θ0 versus H1 : θ = θ1. Recall that the observations
of server hits are modeled as a sequence of i.i.d Bernoulli random variables conditioned on the true type
of an attacker. Therefore, the likelihood-ratio, given a vector of observations zN = (z1, . . . , zN), is given
by λ(zN) = P [zN | X = 1] /P [zN | X = 0] = [θ1(1− θ0)/(1− θ1)θ0]z · [(1− θ1)/(1− θ0)]N where z :=∑N

k=0 zk simply counts the number of FS attacks. By the Neyman-Pearson lemma [6], a test with decision
rule “rejecting H0 if λ(zN) > M” and a Type-I error probability α is a level α UMP test; moreover, it is easy
to check the condition λ(zN) > M is equivalent to z > m for some integer m. However, the defender has

6

no access to the value of θ1 chosen by a spy in our game since both players act simultaneously. Therefore,
the defender in fact carries out an one-sided test H0 : θ ≤ θ0 vs H1 : θ > θ0. By properly choosing
an alternative hypothesis H ′1 : θ = θ̂1, the defender may effectively transform the one-sided test into a
simple-vs-simple one; moreover, by Karlin-Rubin theorem [6] the aforementioned decision rule still yields
a test with the smallest mis-detection rate among all tests with the desired false-alarm rate level.

From above discussion, we see that the defender’s strategy is a pair of non-negative integers (N,m) such
that m < N .

To study the existence of pure Nash equilibrium, we adopt the standard approach of deriving best response
mappings of both players and checking for intersections point(s). Due to the complexity of our payoff
functions, there are no close-form expressions for the best responses and we resort to extensive numerical
experiments. It turns out that a pure Nash equilibrium fails to exist in our Fixed N game. For many
problem instances, we find that the the attacker’s best response function is discontinuous. For these
examples, When a defender commits to a large N , the attacker’s best response is to attack aggressively
by choosing a θ1 that’s large. Conversely, when the defender commits to a small N , the attacker’s best
response is the pick a θ1 close to θ0 to avoid detection. This discontinuity makes it such that the best
response functions of the two players never intersect – and such an intersection is what is needed to have
a Nash equilibrium point.

3.1.2 Dynamic N Game

In this section, we remove the restriction that the defender commits to a fixed observation time. That is,
as in the famous Wald problem [4], the number of observations N before classification depends not just
on the two players’ strategies but also on the particular observation sequence zk = (z0, z1, . . . , zk). The
spy’s problem remains essentially the same as in the preceding section, namely to select how frequently to
hit the file-server relative to the mail-server (i.e., the value of probability θ1). Note that the spy has no
obligation (and, in fact, generally has incentives not) to behave as hypothesized by the defender (i.e., the
spy’s parameter θ1 may differ from the value θ̂1 hypothesized by the defender). The question we seek to
answer is whether it is possible for the defender to hypothesize a value for θ̂1, and design his best response
strategy accordingly, such that the spy’s best response yields θ1 = θ̂1.

If the defender were to hypothesize the true value of θ1, then results for the Wald problem imply that the de-
fender’s best response function takes the form of a Sequential Probability Ratio Test (SPRT) parametrized
by two probability thresholds we denote by η and ξ > 1− η i.e., initialize probability b−1 = p and, in each
stage k = 0, 1, 2 . . . , first apply the probabilistic state recursion

P [X = 1 | zk] ≡ bk =

(1− θ1)bk−1

(1− θ0)(1− bk−1) + (1− θ1)bk−1
, if zk = MS

θ1bk−1
θ0(1− bk−1) + θ1bk−1

, if zk = FS

and then choose to classify-spammer if bk < 1−η, to classify-spy if bk > ξ, and to continue otherwise.
Under the assumption that the defender possesses no knowledge on how the spy may play, the only option
is to employ the SPRT strategy for some hypothesis θ̂1 on the spy’s strategy. We denote such hypothesis-
dependent SPRT thresholds by η(θ̂1) and ξ(θ̂1). We similarly denote the defender’s associated cost in
by JD(θ̂1|θ1), also reflecting its dependence on the spy’s true choice of θ1. Recognizing the defender’s
best response model as a special case of the well-studied Partially Observable Markov Decision Process
(POMDP) [5], we appeal to a publicly available POMDP solver (see http://www.pomdp.org) to both
optimize the SPRT thresholds and compute the defender’s performance JD(θ̂1|θ̂1) if the hypothesis were
in fact true.

The spy’s best response considers the defender’s strategy as given, i.e., hypothesis θ̂1 and the associated
SPRT thresholds η(θ̂1) and ξ(θ̂1) are known to the spy. In turn, for any choice of the true θ1, denote the

7

spy’s associated cost by JA(θ1|θ̂1). It follows that the spy’s best response is the value of θ1 ∈ (θ0, 1] that
minimizes JA(θ1|θ̂1), or equivalently the value of θ1 that maximizes the incentive JA(θ̂1|θ̂1) − JA(θ1|θ̂1)
to deviate from the defender’s hypothesis θ̂1. Our computation of the spy’s response relies on a nonlinear
program, each iteration on a candidate value for θ1 involving the construction and solution of a finite-
state Markov chain that exploits two properties of the defender’s SPRT strategy. Firstly, the defender’s
probabilistic state recursion can (until classification) be equated with a random walk along the real line
involving the defender’s log-likelihood ratio (LLR)

Rk = log

(
P [zk | X = 1]

P [zk | X = 0]

)
=

 Rk−1 + log
(
1−θ̂1
1−θ0

)
, if zk = MS

Rk−1 + log
(
θ̂1
θ0

)
, if zk = FS

,

starting from the origin R−1 = 0. In turn, the SPRT thresholds (and prior probability p) determine the
segments of the real-line corresponding to the three control actions available to the defender i.e., choose

to classify-spammer if Rk < log

(
(1−p)[1−η(θ̂1)]

pη(θ̂1)

)
, to classify-spy if Rk > log

(
(1−p)ξ(θ̂1)
p[1−ξ(θ̂1)]

)
, and to

continue otherwise.

Secondly, the the spy’s strategy θ1 alters the statistics of this random walk, lower (higher) values increasing
the chances that the LLR first exits the continue region at the lower (upper) end of the real-line. The
Markov chain representation involves Q+ 3 states, Q of them indexing the levels of a uniform quantization
of the LLR continue region, one indexing an initial state and two indexing terminal states (one per classify
decision). The transition probabilities reflect not only the spy’s response θ1 and the increments Rk−Rk−1
of the defender’s LLR walk, but also the noise introduced by the quantization. The transition costs
reflect the spy’s rewards from file-server attacks and evading detection, as well as the spy’s cost of actual
detection. Then, in each iteration of the nonlinear program, standard techniques for Markov chains [2]
can be employed to approximate the expected total discounted cost when θ1 is not necessarily equal to θ̂1.
We omit further details here, but the outputs of this method are a particular value for the spy’s policy
parameter θ1 ∈ (θ0, 1] and the spy’s associated cost JA(θ1|θ̂1).
For the game-aware defender, the key question is whether there exists a hypothesis θ̂1 from which the spy
has no incentive to deviate, choosing θ1 = θ̂1. Fig. 6 illustrates an empirical solution obtained via the
computational methods and approximations discussed above, where for each hypothesis θ̂1 we

1. employ the POMDP solver to obtain for the defender’s (a) SPRT thresholds η(θ̂1) and ξ(θ̂1) as well
as (b) penalty JD(θ̂1|θ̂); then

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Defender’s Response

Hypothesis, θ̂1 ∈ (θ0, 1]

S
P
R
T

T
h
re
sh
ol
d
s

η(θ∗1) ≈ 0.642

ξ(θ∗1) ≈ 0.962

ξ(θ1)
1− η(θ1)

0 0.5 1
1

1.5

2

2.5

Defender’s Performance

Hypothesis, θ̂1 ∈ (θ0, 1]

P
en
al
ty
,
J

D
(θ̂

1
|θ̂ 1

)

JD(θ∗1|θ∗1) ≈ 1.46

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Spy’s Response

Hypothesis, θ̂1 ∈ (θ0, 1]

T
ru
e,

θ 1

θ∗1 ≈ 0.152

θ 1
=
θ̂ 1

0 0.5 1
−20

0

20

40

60

Spy’s Performance

Hypothesis, θ̂1 ∈ (θ0, 1]

P
en
al
ty
,
J

A
(θ

1
|θ̂ 1

)

JA(θ∗1|θ∗1) ≈ −2.30

JA(θ̂1|θ̂1)
JA(θ1|θ̂1)

(a) (b) (c) (d)

Figure 6: Equilibrium solution to the dynamic N game with p = 0.5, θ0 = 0.1, δ = 0.95, c0 = 0.01, c1 = 1
and L = F = 50. Each marked point on the defender’s response and performance curves (plots (a) and
(b), respectively) is obtained via the POMDP solver, while each marked point on the spy’s response and
performance curves (plots (c) and (d), respectively) is obtained via the nonlinear program iterating on a
quantized approximation (with Q = 100) of the defender’s SPRT solution. The equilibrium point is where
the spy’s response curve in (c) intersects the θ1 = θ̂1 line.

8

2. employ the nonlinear program to obtain the spy’s (c) true θ1 and (d) the penalty JA(θA1 |θ̂1) (where we
also show its comparison to penalty JA(θ̂1|θ̂1) were the spy to behave as the defender hypothesizes).

Our procedure starts with values for θ̂1 over the whole interval (θ0, 1] in increments of 0.1. Then, it identifies
each sub-interval in which, under the assumption of continuity, there may lie a point in which θ1 = θ̂1.
The procedure continues with values for θ̂1 over each such sub-interval in increments of 0.01, and so on.
The procedure terminates at a pre-specified precision, which in Fig. 6 was set to 0.001. The markers on
each curve in Fig. 6 denote the selected values of θ̂1 over the entire procedure. The solution point in each
plot corresponds to the value of θ̂1 at which the spy’s response θ1 in Fig. 6(c) is nearest to the θ1 = θ̂1 line.

Observe that the two players’ response functions exhibit a smooth confusion versus exploitation trade-off.
That is, for hypotheses θ̂1 close to θ0, the defender’s SPRT thresholds are such that spammer classifications
are made frequently and nearly immediately: in other words, when the defender anticipates a spy favoring
confusion, his strategy reduces to near-immediate expulsion of either type of attacker and, in turn, the
spy’s response is to hit the FS at every opportunity. For hypotheses θ̂1 away from θ0, the defender’s SPRT
thresholds are such that classification is deferred: in other words, when the defender anticipates a spy
favoring exploitation, his strategy allows for the time to reliably classify either type of attacker and, in
turn, the spy’s response is to evade detection by hitting the FS almost as infrequently as spammers do.
For the model parameters in Fig. 6, the equilibrium point of θ∗1 ≈ 0.152 neutralizes all incentive for the
spy to either confuse an exploitation-oriented defense or to exploit a confusion-oriented defense.

3.1.3 Conclusion

In this part of the project, we developed a security classification game. The defender tries to effectively clas-
sify the attackers (spammer or spy) while controlling the damage during the period of gathering evidence.
A strategic spy faces the trade-off between (i) exploiting the defender’s observation time by attacking ag-
gressively and (ii) confusing the defender by mixing attacks thereby enjoying the benefits of mis-detection.
The non-existence of pure Nash equilibrium of our fixed N game suggests that an over-simplified strategy
adopted by the defender will never lead the game to settle to a stable point where both players behave
predictably. This problem is mitigated by allowing the defender to make decisions at each period of time
in our dynamic N game, which essentially dis-incentivizes the spy’s response to drastically shift from
aggressive exploitation to moderate confusion.

3.2 Attacker Chooses Mixing Distribution

The results of this section are described in more detail in [7].

3.2.1 Basic Model

The game model is as follows. As in the earlier family of models, Nature decides the type of an attacker in
a network: spy or spammer with probabilities p and 1− p respectively. The network consists of a defender
and two servers that might be attacked: a File Server (FS) with sensitive data and a Mail Server (MS) with
contents of inferior importance. The spy’s goal is to attack the FS as frequently as possible while evading
detection, and the spammer’s goal is to attack the MS to congest the network or annoy the defender.
The defender is a strategic player who monitors the two types of servers at each time slot (we consider
discrete time). We assume a constant classification window of N time slots, during which the defender
observes the number of attacks to the FS. The spammer is a non-strategic player, who attacks on the FS
S time slots with a known cumulative distribution function. For instance, he can be modeled to have a
Bernoulli distribution at each time slot with a small per-period probability θ0 of a hit on the FS. For a

9

fixed observation window of N time slots, the defender selects the threshold T of time slots, below which
he classifies the attacker as a spammer and the spy selects the number of FS attacks H to launch.

Attacker’s cost function: The spy is detected when the defender’s threshold T is smaller or equal to the
spy’s selection of H (the number of FS attacks). In this case, he has a cost of cd. We assume that each
FS hit gives the spy some benefit captured by the parameter ca. We also assume that he gains nothing
from attacking the MS. His overall gain from the attacks is proportional to the number of time slots H he
selected to attack. Since it will be useful to work with a cost function for the attacker rather than a payoff
function, we subtract the gain from the attacks. Thus, his overall cost function can be expressed as follows

JA(T,H) = cd · 1T≤H − ca ·H,

where 1T≤H is 1 if T ≤ H and 0 otherwise.

Defender’s reward function: The defender’s expected reward function depends on the true type of the
attacker. In the case that he faces a spy (which happens with probability p), he makes a correct classification
and gains cd when his threshold T ≤ H. He always gets a cost from the FS attacks which is proportional
to H. With probability 1 − p he faces a spammer who selects to attack S time slots. For a fixed T , we
denote by φ(T) = Pr{S ≥ T} the probability that the spammer attacks at least T times on the FS. Then,
the defender has an expected false alarm penalty of cfa · φ(T) and his total expected payoff is

ŨD(T,H) = p · (cd · 1T≤H − ca ·H)− (1− p) · cfa · φ(T).

By scaling the above function, we finally get

UD(T,H) = cd · 1T≤H − ca ·H − µ(T),

where µ(T) = 1−p
p · cfa · φ(T). We assume that φ(T) is strictly decreasing with T .

3.2.2 Players’ interactions

For a fixed classification window N the spy has N+1 available actions: attack the file server H ∈ {0, . . . , N}
times, whereas the defender has N + 2 available actions: select T ∈ {0, . . . , N + 1} as the classification
threshold. A threshold of 0 always results in spy classification (as any intruder will attack the FS at least
0 times), and a threshold of N + 1 always results in spammer classification.

We model our problem as a nonzero-sum game, where the term in the defender’s payoff that is different
than the spy’s cost depends only on the defender’s strategy. In the literature these games are known as
almost zero-sum games or quasi zero-sum games. We are interested in Nash equilibria in mixed strategies
for the following reason. On the one side, the spy seeks to select a number of attacks just below the
defender’s threshold. On the other side, the defender aims to select a threshold equal to the attacker’s
strategy. Thus the players need to mix between different strategies to make themselves less predictable.
The spy chooses a distribution α on the available numbers of FS hits – thus α is a vector of size N+1 with
non negative elements that sum to 1. Similarly the defender chooses a distribution β on the collection of
possible thresholds T . Thus β is a vector of size N + 2.

3.2.3 Game-Theoretic Analysis

In this section, we state our main theorem. We use the notation “min” when we find the minimum element
of a vector, and “minimize” when we minimize a specific expression over some constraints. We use the
superscript T for matrix transposition.

Let Λ be a (N + 1)× (N + 2) matrix representing the spy’s strategies’ cost for any possible strategy of the
defender. We shift Λ by a constant parameter Nca+ ε, with ε > 0. Thus, Λ can be written in the following

10

form

Λ̃ =cd

1 0 . . . 0 0
1 1 . . . 0 0
1 1 . . . 0 0
...

...
. . .

...
...

1 1 . . . 1 0

− ca

0 0 . . . 0
1 1 . . . 1
2 2 . . . 2
...

...
...

...
N N . . . N

The last all-zero column in the first component of Λ̃ captures that is never caught when the defender
chooses the N + 1 threshold. With Λ̃ defined as above, the attacker cost can be written as αT Λ̃β and the
defender payoff can be written as αT Λ̃β − µTβ. It will turn out that certain computations are simplified
by using a a matrix with only positive entries. We therefore define

Λ = Λ̃ + (Nca + ε) · 1(N+1)×(N+2)

where 1(N+1)×(N+2) is a matrix of all ones of dimension (N + 1)× (N + 2). Since α and β must each sum

to 1, the expressions αTΛβ and αTΛβ−µTβ are respectively the attacker cost and defender payoff shifted
by a constant. Since adding a constant to a players payoff does not affect their best responses, from here
on we will consider these expressions to be the payoff functions of each player.

For a given defender strategy, β, the minimum attacker cost is achieved by putting positive probability
only on strategies corresponding to the minimum entries of the vector Λβ. Such a strategy results in a
attacker cost of min[Λβ] where min extracts the minimum element of the vector. The defender’s payoff
when the attacker plays a best response is

θ(β) = min[Λβ]− µTβ.

This function is important for our subsequent analysis. Since it is a measure of how “good” a strategy β
is, we refer to θ(β) as the defendability of β. This is similar to the concept of “vulnerbaility” developed in
[8].

Lemma 1 In NE, the defender strategy β must maximize θ(β).

Proof 1 (Proof Sketch) The minimum cost the attacker can achieve in response to β is δ := min[Λβ].
In Nash Equilibrium, the attacker must be playing a best response and the defender must not be able to
improve payoff with a unilateral deviation. The attacker’s optimization problem, subject to the constraint
that he pick a strategy that makes the defender unable to improve payoff from a unilateral deviation takes
the form

minimize
α

βTΛTα

subject to α ≥ 0,1Tα ≥ 1,

ΛTα− µ ≤ θ(β)1.

The solution of this problem needs to be δ, since if it were more than δ, the attacker would not be achieving
the minimum possible cost. However, analysis of the dual of this program shows that the problem yields a
solution of δ only if β is a maximizer of the function θ(β). The details of the dual program analysis are
left out here for space constraints.

In NE the defender maximizes defendability, or equivalently he picks a solution of the following LP:

maximize
β,z

− µTβ + z

subject to z1 ≤ Λβ

1Tβ = 1.

(1)

11

Table 1: Defender’s strategy in NE (βm = ca/cd)
. . . βs βs+1 . . . βN βN+1

1. 0 0 βm βm βm 1− (N − s)βm
2. 0 1− (N − s)βm βm βm βm 0

0

0.25

0.5

0.75

P
ro
b
ab

il
it
y

0 1 2 3 4 5 6 7 8

FS Attacks

Spy

Defender

Figure 7: Players’s best responses in NE for N = 7, θ0 = 0.1,cd = 15, ca = 1, cfa = 23, p = 0.2.

As we can see from the LP the defendability is maximized at one of the extreme points of the polyhedron

defined by Λx ≥ 1. Given an extreme point x, the corresponding distribution is β =
x

‖x‖ .

Theorem 1 In any Nash equilibrium the defender’s strategy β maximizes the defendability. A maximizing
value of β exists amongst one of the two forms in Table 1 for some s. If there is only one maximizing β
amongst vectors of the form in Table 1, then the Nash equilibrium is unique.

The theorem is shown by showing that an extreme point vector that corresponds to a maximizing distri-
bution vector of defendability has certain properties. Most importantly, there needs to be one contiguous
block of tight inequalities in the equations Λx ≥ 1. Using that fact, one can show that if s and f are
the start and finish indices of the contiguous block, then βs+1 through βf needs to equal ca/cd. Other
properties can be used to show that f must either be N or N + 1.

3.2.4 Numerical Results/Simulations

We conducted various experiments for different sets of parameters N, ca, cd and p, assuming that the spam-
mer attacks with Bernoulli distribution with parameter θ0. We first used the methods discussed above to
calculate the strategies of both players at equilibrium. We later used the Gambit software [9] and vali-
dated our theoretical results. We present here two characteristic examples, to illustrate the two possible
structures of the Nash equilibria (the two aforementioned cases).

Figure 7 illustrates Case 1 and the unique Nash equilibrium for N = 7 time slots. As we can see, all the
middle points are given the same weight xm = ca/cd = 0.0667, xs = 0 and xf+1 > xm. The structure of
the equilibria is given by the first row of Table 1, with s = 1 and f = 7.

Figure 8 presents the unique Nash equilibrium for N = 7 in Case 2. As we can see, again all the middle
points are given the same weight xm = ca/cd = 0.1, but here xs > xm and xf+1 = 0. Note that as p
increases, larger weight is given to the smallest threshold, in order to detect the most-probable-to-exist
spy. We also observe that the defender still gives some weight on the larger thresholds and is not focused
on a range around Nθ0. This can be explained from the strictly decreasing false alarm cost function µ:
the defender has always an incentive to use larger thresholds to increase his expected payoff.

12

0

0.25

0.5

0.75

P
ro
b
ab

il
it
y

0 1 2 3 4 5 6 7 8

FS Attacks

Spy

Defender

Figure 8: Players’s best responses in NE for N = 7, θ0 = 0.1,cd = 10, ca = 1, cfa = 10, p = 0.8.

Figure 9: Numerical results of revised model with forensics.

3.2.5 Model Extension to Study Value of Forensics

We have extended this model to study a situation in which if the spy is detected, the cost to him is
proportional to how hard he attacked. The idea here is that if he attacked harder, the defender will
have more evidence to analyze to learn about the attacker. By comparing the equilibrium payoffs with
and without this feature, one can get a measure of the value to an organization of investing in forensics
capabilities (since without theses capabilities one could not use the evidence left by the attacker against
him). This study is detailed in our paper [10]. This work also generalizes the results of this spy-defender
game to apply to more general payoff functions than those described here. Figure 9 illustrates some
numerical results from this study. The first panel shows the expected value of threshold and attach strength
H, and the equilibrium defender payoff for the revised model, as a function of the prior probability p that
the attacker is a spy. The second panel compares the defender payoff in the revised model (with forensics)
to the older model (without).

3.2.6 Quasi Zero-Sum Games

In this work, the game model has the feature that it looks “almost” like a zero-sum game. The defender’s
payoff is the opposite of the spy’s, plus an extra term than only depends on the defender’s action. This
structure we call a “quasi zero-sum game.” Our work on this model shows that equilibria of quasi zero-sum
games can be found by solving a Linear Program (LP), just as true zero-sum games are widely known to
be solvable with an LP. This finding is important because quasi zero-sum games can potentially model a

13

wide range of practical problems in the information security domain. We are currently preparing a paper
discussing this finding and planning to submit it to an operations research journal.

4 Conclusions and Impact

In this project we have demonstrated the potential value of not always expelling attackers detected in the
system. This important observation has potential impact in real-world applications. We have also studied
the problem of classifying attackers that are trying to evade classification. The closed-loop behavior of
attackers trying to remain below a detection threshold results in Nash Equilibria being mixed in most
situations. This qualitative finding suggests that developers of security software doing classification or
intrusion detection should consider using randomized thresholds. The same observation may apply to spam
filtering software. The qualitative findings from this work, we hope, will have an impact on developers of
such systems. However, there are many unanswered questions that these findings lead to, such as how can
a designer of security software choose the right randomization strategy? Questions like this are likely to
be a topic of future research for us, and perhaps others in the research community.

Our results on quasi zero-sum games also have a great deal of potential impact. There are a large number
of practical situations that are modeled much more accurately by a quasi zero-sum game than a true zero-
sum game. The ability to efficiently find equilibria of this broader class of games may have great potential
impact by enabling researchers to build and analyze a broader class of models.

References

[1] N. Bao an J. Musacchio, “Optimizing the Decision to Expel Attackers from an Information System,” Proceedings
of the 47th Annual Allerton Conference on Communication and Control, Monticello, IL, Sept. 2009.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed. Athena Scientific, 2001, vol. I, II.
[3] N. Bao, O. P. Kreidl, and J. Musacchio, “A Network Security Classification Game,” in GameNets, April 2011.
[4] A. Wald, Sequential Analysis, Wiley, New York, NY: 1947.
[5] L. Kaebling, M. Littman and A. Cassandra. “Planning and acting in partially observable stochastic domains,”

Artificial Intelligence, 101:99-134, 1998.
[6] G. Casella and R. Berger, Statistical Inference; 2nd ed., Duxbury Press, 2002.
[7] L. Dritsoula, P. Loiseau, J. Musacchio, “A Game-Theoretical Approach for Finding Optimal Strategies in an

Intruder Classification Game,” Conference on Decision and Control, Wailea, HI, Dec. 2012.
[8] A. Gueye, J. C. Walrand, and V. Anantharam, “A Network Topology Design Game: How to Choose Commu-

nication Links in an Adversarial Environment?,” in GameNets, April 2011.
[9] Gambit, “Gambit game theory analysis software and tools”, http://www.hss.caltech.edu/gambit, 2002.

[10] L. Dritsoula, P. Loiseau, J. Musacchio, “Computing the Nash Equilibria of Intruder Classification Games,”
Conference on Decision and Game Theory for Security, Budapest, Hungary, Nov. 2012.

14

	Title Page_Dist A-09-1-0049
	AFRL-OSR-VA-TR-2013-0172

	FA9550-09-1-0049_-_SF_298[1]
	FA9550-09-1-0049_-_Final_Report[1]

